

# **Tutorial 1** Bayesian Optimization and Reinforcement Learning

Shadan Golestan golestan@ualberta.ca







**Supervised Learning** 

**Data:** (x, y)*x*: features, *y*: label

**Goal:** learn a function to map  $y \rightarrow x$ 

#### **Example:**

Cats:

Dogs:











**Data:** (x, y)*x*: features, *y*: label

**Goal:** learn a function to map  $y \to x$ 





Dogs:





**Data:** (x)*x*: features, no label

**Goal:** learn underlying structure

These are similar things



**Unsupervised Learning** 

#### **Example:**

These are similar things









**Data:** (x, y)*x*: features, *y*: label

**Goal:** learn a function to map  $y \to x$ 





Dogs:





**Data:** (x)*x*: features, no label

**Goal:** learn underlying structure

These are similar things



**Unsupervised Learning** 

#### **Example:**

These are similar things

### 

#### **Sequential Decision Making**



**Goal:** maximize some reward

**Example:** 









**Data:** (x, y)*x*: features, *y*: label

**Goal:** learn a function to map  $y \rightarrow x$ 

**Example:** 

Cats:

Dogs:

**Data:** (x)*x*: features, no label

**Goal:** learn underlying structure

**Example:** These are These are similar things similar things 

### 

#### **Sequential Decision Making**



**Goal:** maximize some reward

**Example:** 











input  $x \longrightarrow$ 



input  $x \longrightarrow$ 







**Estimation of Distribution Algorithms** (Bayesian Optimization)





**Estimation of Distribution Algorithms** (Bayesian Optimization)



does not change with x (static)





**Estimation of Distribution Algorithms** (Bayesian Optimization)



does not change with x (static)







**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with *x* (static)

**Goal:** finding the best *x* 







**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with x (static)

**Goal:** finding the best *x* 

#### **Reinforcement Learning**

**Function** f(x) changes with x (dynamic)

**G** Goal: finding a policy that gives the best *x* at each state of f(x)





**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with x (static)

**Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

#### **Reinforcement Learning**

**Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best *x* at each state of f(x)





**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with x (static)

**Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

#### **Reinforcement Learning**

**Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best *x* at each state of f(x)

> **Process:** learn and improve decisions iteratively





**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with x (static)

**Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution With the second seco

#### **Reinforcement Learning**

**Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best *x* at each state of f(x)

> **Process:** learn and improve decisions iteratively





**Estimation of Distribution Algorithms** (Bayesian Optimization)

**Function** f(x)

does not change with x (static)

**Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution With the second seco

#### **Reinforcement Learning**

**Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best *x* at each state of f(x)

> **Process:** learn and improve decisions iteratively





does not change with *x* (static)

**G Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution f(x) (*Solution of the second stress of the second se* 

#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution With the second seco





does not change with x (static)

**G Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution With the second seco









#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution With the second seco





does not change with x (static)

**G Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution f(x) (f(x)) (f(x)) (f(x))











#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution With the second seco





**Goal:** finding the best *x* 

Process: learn and improve decisions iteratively

Solution f(x) (*Solution of the second stress of the second se* 



#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution f(x) **Uncertainty:** unknown, noisy f(x)





#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution f(x) **Uncertainty:** unknown, noisy f(x)





#### **Reinforcement Learning**

### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution f(x) **Uncertainty:** unknown, noisy f(x)





#### **Reinforcement Learning**

#### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution f(x) (*Solution of the second stress of the second se* 







#### **Reinforcement Learning**

#### **Function** f(x) changes with x (dynamic)

**Goal:** finding a policy that gives the best x at each state of f(x)

Process: learn and improve decisions iteratively

Solution f(x) (*Solution of the second stress of the second se* 



1) initial sample









1) initial sample

2) fit a surrogate model given samples







- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$











- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$
- 4) optimize  $\alpha(x)$



```
x_{next} = \arg max \ \alpha(x)
       x \in X
```






- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$
- 4) optimize  $\alpha(x)$
- 5) sample  $x_{next}$

```
x_{next} = \arg max \ \alpha(x)
       x \in X
```







- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$
- 4) optimize  $\alpha(x)$

```
x_{next} = \arg \max_{x \in X} \alpha(x)
```

- 5) sample *x<sub>next</sub>*
- 6) update surrogate model







- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$
- 4) optimize  $\alpha(x)$

```
x_{next} = \arg \max_{x \in X} \alpha(x)
```

- 5) sample  $x_{next}$
- 6) update surrogate model
- 7) iterate from 3







- 1) initial sample
- 2) fit a surrogate model given samples
- 3) obtain an acquisition function  $\alpha(x)$
- 4) optimize  $\alpha(x)$

```
x_{next} = \arg \max_{x \in X} \alpha(x)
```

- 5) sample  $x_{next}$
- 6) update surrogate model
- 7) iterate from 3



**System Design Optimization** 





**System Design Optimization** 

#### **Sensor Placement** Optimization



Golestan, Shadan, Omid Ardakanian, and Pierre Boulanger. "Grey-Box Bayesian Optimization for Sensor Placement in Assisted Living Environments." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 20. 2024.





**System Design Optimization** 

#### **Sensor Placement** Optimization



Golestan, Shadan, Omid Ardakanian, and Pierre Boulanger. "Grey-Box Bayesian Optimization for Sensor Placement in Assisted Living Environments." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 20. 2024.







**System Design Optimization** 

#### **Sensor Placement** Optimization



Golestan, Shadan, Omid Ardakanian, and Pierre Boulanger. "Grey-Box Bayesian Optimization for Sensor Placement in Assisted Living Environments." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 20. 2024.









System Design Optimization

#### **Sensor Placement** Optimization



Golestan, Shadan, Omid Ardakanian, and Pierre Boulanger. "Grey-Box Bayesian Optimization for Sensor Placement in Assisted Living Environments." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 20. 2024.





AutoML (Hyperparameter Optimization)





System Design Optimization

#### **Sensor Placement Optimization**



Golestan, Shadan, Omid Ardakanian, and Pierre Boulanger. "Grey-Box Bayesian Optimization for Sensor Placement in Assisted Living Environments." Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 38. No. 20. 2024.





### AutoML (Hyperparameter Optimization)

#### Automatic LQR Tuning Based on Gaussian Process Global Optimization



https://am.is.mpg.de/research projects/cont-learn-bayes-opt

# **Reinforcement Learning**

- Learning by interaction
  - Nature-inspired: Learn how to achieve a particular task by trial and error





- Learning by interaction lacksquare
  - Nature-inspired: Learn how to achieve a particular task by trial and error









- Learning by interaction  $\bullet$ 
  - Nature-inspired: Learn how to achieve a particular task by trial and error











- Learning by interaction  $\bullet$ 
  - Nature-inspired: Learn how to achieve a particular task by trial and error







- Learning by interaction ullet
  - Nature-inspired: Learn how to achieve a particular task by trial and error







- Learning by interaction  $\bullet$ 
  - Nature-inspired: Learn how to achieve a particular task by trial and error



#### **Object manipulation**



https://sites.google.com/view/entity-centric-rl

Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity-Centric Reinforcement Learning for Object Manipulation from Pixels." arXiv preprint arXiv:2404.01220 (2024).





- Learning by interaction  $\bullet$ 
  - Nature-inspired: Learn how to achieve a particular task by trial and error



#### **Object manipulation**



https://sites.google.com/view/entity-centric-rl

Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity-Centric Reinforcement Learning for Object Manipulation from Pixels." arXiv preprint arXiv:2404.01220 (2024).

#### Locomotion



https://sites.google.com/view/entity-centric-rl

Ha, David. "Reinforcement learning for improving agent design." Artificial life 25.4 (2019): 352-365.

the navigation task







- Learning by interaction  $\bullet$ 
  - Nature-inspired: Learn how to achieve a particular task by trial and error



#### **Object manipulation**



https://sites.google.com/view/entity-centric-rl

Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity-Centric Reinforcement Learning for Object Manipulation from Pixels." *arXiv preprint* arXiv:2404.01220 (2024).

#### Locomotion



https://sites.google.com/view/entity-centric-rl

Ha, David. "Reinforcement learning for improving agent design." Artificial life 25.4 (2019): 352-365.

#### Adaptation

the navigation task



https://anniesch.github.io/adapt-on-the-go/

Chen, Annie S., et al. "Adapt On-the-Go: Behavior Modulation for Single-Life Robot Deployment." arXiv preprint arXiv:2311.01059 (2023).









### **Reinforcement Learning Core Concepts and Terminology**





### **Reinforcement Learning Core Concepts and Terminology**














### **Environment**:

the world where the agent exists in e.g., an assembly line







the allowed moves e.g. joints movements, grab/drop objects





# Actions $(a_t)$ :



### **Environment**:

the world where the agent exists in e.g., an assembly line









## Actions $(a_t)$ : the allowed moves

e.g. joints movements, grab/drop objects



### **Environment**:

the world where the agent exists in e.g., an assembly line

### **Observations:**

changes of the environment observable by the agent e.g. objects locations









#### **Environment:** the world where the agent exists in

e.g., an assembly line

### **Observations:**

changes of the environment observable by the agent

e.g. objects locations







changes of the environment observable by the agent e.g. objects locations



the immediate situation the agent finds itself in





#### **Environment:** the world where the agent exists in

e.g., an assembly line

#### **Observations:**







#### **Observations:** changes of the environment observable by the agent e.g. objects locations

## States ( $s_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_t)$

a feedback to measure the success/failure of  $a_t$ 





#### **Environment**: the world where the agent exists in

e.g., an assembly line







changes of the environment observable by the agent e.g. objects locations

## States ( $S_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_t)$

a feedback to measure the success/failure of  $a_t$ 



#### **Environment**: the world where the agent exists in

e.g., an assembly line

#### **Observations:**

#### Sum of Reward $(R_t)$ Η $R_t = \sum r_t$ i=t*H* is a horizon (can be $\infty$ )







changes of the environment observable by the agent e.g. objects locations

## States ( $S_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_t)$

a feedback to measure the success/failure of  $a_t$ 



#### **Environment**: the world where the agent exists in

e.g., an assembly line

#### **Observations:**

## Sum of Reward $(R_t)$ $R_t = \sum_{t=1}^{\infty} r_t = r_t + r_{t+1} + r_{t+2} \dots + r_H$ 1 = 1*H* is a horizon (can be $\infty$ )







changes of the environment observable by the agent e.g. objects locations

## States ( $S_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_{t})$

a feedback to measure the success/failure of  $a_t$ 

## Sum of Reward $(R_t)$ $R_t = \sum r_t = r_t + r_{t+1} + r_{t+2} \dots + r_H$ *H* is a horizon (can be $\infty$ )

#### **Discounted Sum of Reward (** $R_{t}$ **)** H

 $R_t$ 

l = t $\gamma$  is a discount factor ( $0 < \gamma < 1$ ): makes future rewards worth less



#### **Environment**: the world where the agent exists in

e.g., an assembly line

#### **Observations:**

$$=\sum_{i=1}^{N}\gamma^{i}r_{t}$$





changes of the environment observable by the agent e.g. objects locations

## States ( $S_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_{t})$

a feedback to measure the success/failure of  $a_t$ 

*H* is a horizon (can be  $\infty$ )

#### **Discounted Sum of Reward (** $R_{t}$ **)** TT

 $R_t$ 

 $\gamma$  is a discount factor ( $0 < \gamma < 1$ ): makes future rewards worth less





#### **Environment**: the world where the agent exists in

e.g., an assembly line

#### **Observations:**

# Sum of Reward $(R_t)$ $R_{t} = \sum r_{t} = r_{t} + r_{t+1} + r_{t+2} \dots + r_{H}$

$$=\sum_{i=t}^{H}\gamma^{i}r_{t}$$







changes of the environment observable by the agent e.g. objects locations

## States ( $S_{t+1}$ )

the immediate situation the agent finds itself in

## **Reward** $(r_{t})$

a feedback to measure the success/failure of  $a_t$ 

*H* is a horizon (can be  $\infty$ )

## **Discounted Sum of Reward (** $R_t$ **)**

 $R_t$ 

 $\gamma$  is a discount factor ( $0 < \gamma < 1$ ): makes future rewards worth less





#### **Environment**: the world where the agent exists in

e.g., an assembly line

#### **Observations:**

# Sum of Reward $(R_t)$ $R_{t} = \sum r_{t} = r_{t} + r_{t+1} + r_{t+2} \dots + r_{H}$

$$= \sum_{t=1}^{H} \gamma^{i} r_{t} = \gamma^{t} r_{t} + \gamma^{t+1} r_{t+1} + \gamma^{t+2} r_{t+2} \dots + \gamma^{H} r_{H}$$

i=t

OR

1 year later





Actions  $(a_t)$ : the allowed moves e.g. joints movements, grab/drop objects Agent: the entity that takes actions e.g., robots **Observations:** changes of the environment observable by the agent e.g. objects locations **Reward**  $(r_t)$  **States**  $(s_{t+1})$ 



## **Environment**:

the world where the agent exists in e.g., an assembly line









## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 



## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$



## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

If the agent "magically" knows  $Q(s_t, a_t)$ , how it should take action  $a_t$ at any given state?



## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

If the agent "magically" knows  $Q(s_t, a_t)$ , how it should take action  $a_t$ at any given state?

## Policy $\pi$

best action to take at any given state *s* 



## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

If the agent "magically" knows  $Q(s_t, a_t)$ , how it should take action  $a_t$ at any given state?

## Policy $\pi$

best action to take at any given state *s* 

 $\pi^*(s) = \arg \max Q(s, a)$ 



### Action

|        |                       | $a_0$         | $a_1$         | <i>a</i> <sub>2</sub> |
|--------|-----------------------|---------------|---------------|-----------------------|
|        | <i>s</i> <sub>0</sub> | $Q(s_0, a_0)$ | $Q(s_0, a_1)$ | $Q(s_0,$              |
| states | <i>s</i> <sub>1</sub> | $Q(s_1, a_0)$ | $Q(s_1, a_1)$ | $Q(s_1,$              |
|        | <i>s</i> <sub>2</sub> | $Q(s_2, a_0)$ | $Q(s_2, a_1)$ | $Q(s_2,$              |
|        |                       |               |               |                       |



## **Q**-function

$$Q(s_t, a_t)$$

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

If the agent "magically" knows  $Q(s_t, a_t)$ , how it should take action  $a_t$ at any given state?

## **Policy** $\pi$

best action to take at any given state s

 $\pi^*(s) = \arg \max Q(s, a)$ 







## **Q-function**

 $Q(s_t, a_t)$ 

expected total future reward that the agent can receive in state  $S_t$  by taking action  $a_t$ 

$$Q(s_t, a_t) = E[R_t | s_t, a_t]$$

If the agent "magically" knows  $Q(s_t, a_t)$ , how it should take action  $a_t$ at any given state?

## Policy $\pi$

best action to take at any given state *s* 

 $\pi^*(s) = \arg \max Q(s, a)$ 



**Q-function** 

 $Q(s_t, a_t)$ 

Policy  $\pi$ 

Agent: the entity that takes actions e.g., robots



changes of the environment observable by the agent e.g. objects locations

# **Discounted Sum of Reward (** $R_{t}$ **)**

### Actions $(a_t)$ : the allowed moves

e.g. joints movements, grab/drop objects



## **Environment**:

the world where the agent exists in e.g., an assembly line

### **Observations:**











## **Environment**:

the world where the agent exists in e.g., an assembly line









1. Initialize  $\pi$ 





- 1. Initialize  $\pi$
- 2. t = 0





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:

4.1. Take  $a_t = \pi(s_t)$ 





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) =$





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) = (1 \alpha)$

+  $\alpha$ (





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) = (1 \alpha) Q(s_t, a_t) + \alpha($





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) = (1 \alpha) Q(s_t, a_t) + \alpha(r_t + \gamma \max Q(s_{t+1}, a'))$





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) = (1 \alpha) Q(s_t, a_t) + \alpha (r_t + \gamma \max_{\alpha'} Q(s_{t+1}, \alpha'))$

# 4.4 With prob. $1 - \epsilon$ : $\pi(s_t) = \arg \max Q(s_t, a)$ ; else choose a random action $\mathcal{A}$





- 1. Initialize  $\pi$
- 2. t = 0
- 3. Initialize  $s_t = s_0$
- 4. Loop:
  - 4.1. Take  $a_t = \pi(s_t)$
  - 4.2. Observe  $(r_t, s_{t+1})$
  - 4.3.  $Q(s_t, a_t) = (1 \alpha) Q(s_t, a_t) + \alpha (r_t + \gamma \max_{\alpha'} Q(s_{t+1}, \alpha'))$

4.5. t = t + 1

# 4.4 With prob. $1 - \epsilon$ : $\pi(s_t) = \arg \max Q(s_t, a)$ ; else choose a random action $\mathcal{A}$





## **Reinforcement Learning Deep Q Network (DQN)**

Main Idea: use neural networks to model Q-Function














































Main Idea: use neural networks to model Q-Function











Main Idea: use neural networks to model Q-Function











Main Idea: use neural networks to model Q-Function











Main Idea: use neural networks to model Q-Function











Main Idea: use neural networks to model Q-Function











Main Idea: use neural networks to model Q-Function











## **Reinforcement Learning Real-World Applications**



Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature 518.7540 (2015): 529-533.





## **Reinforcement Learning Real-World Applications**



Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature 518.7540 (2015): 529-533.





#### **Bayesian Optimization**

#### **Reinforcement Learning**















#### **Bayesian Optimization**

Static

#### Deterministic











#### **Bayesian Optimization**

Static

#### Deterministic

**Direct and** immediate









