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Machine Learning Paradigms

ul Data: (x,y)
x: features, y: label

Goal: learn a function
tomapy — x

. Example:

Dogs:
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Machine Learning Paradigms

ul Data: (x, y) ul Data: (x)
x: features, y: label x: features, no label

Goal: learn a function @ Goal: learn underlying

tomapy — x structure

. Example:
These are These are
similar things similar things
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Machine Learning Paradigms

ul Data: (x, y) ul Data: (x)
x: features, y: label x: features, no label

Goal: learn a function @ Goal: learn underlying Goal: maximize
tomapy — x structure some reward

. Example: . Example:
These are These are
similar things similar things
| aranra

@ eats é because

It keeps @ alive
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Machine Learning Paradigms

Sequential Decision Making

Goal: maximize
some reward

. Example:

&y eats é because

It keeps & alive
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(Bayesian Optimization)

Function f(x)
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Estimation of Distribution Algorithms
(Bayesian Optimization)

Function f(x)
does not change with x (static)

@ Goal: finding the best x

© Process: learn and improve
decisions iteratively

A Uncertainty: unknown, noisy f(x)
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Reinforcement Learning

Function f(x) changes with x (dynamic)

@  Goal: finding a policy that gives the best x
at each state of f(x)

1© Process: learn and improve
decisions iteratively

A Uncertainty: unknown, noisy f(x)
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v Observation:
1) new state of f after applying x
2) How good x was
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Bayesian Optimization

1) initial sample

J(x)

2) fit a surrogate model given samples

J(x)
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Bayesian Optimization

1) initial sample

J(x)

2) fit a surrogate model given samples

3) obtain an acquisition function a(x)

J(x)

a(x) .
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Bayesian Optimization

1

2) fit a surrogate model given samples

)
)
3)
)

initial sample

J(x)

obtain an acquisition function a(x)
4) optimize a(x)

= arg max a(x)
xeX

xnext

J(x)

a(x) .
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Bayesian Optimization

Ly, fOe) - (g, (X)) )

[ initial
samples
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Bayesian Optimization

Rt S Fit a
7”1 Surrogate @

pEEEEEEEES ; :  Model

Ly, fOe) - (g, (X)) )

[ initial
samples
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Tt b Fit a
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ACqUISItlon Compute :1=========:: : Model

function

a(x; f)
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Bayesian Optimization

Gaussian Process
Probabilistic Random Forest

' ----------- ‘ ‘ Fita
] e o’ 1
. ”": |
Acquisit T R iSurrogate Q )
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1O, fOe) - (g, (X))

= arg max a(x;f)
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Bayesian Optimization

Probability of Improvement Gaussian Process

Expected Improvement Probabilistic Random Forest

I’ ------------- ~\ " ------------ ~\ .
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= arg max a(x;f)

Xnext
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Bayesian Optimization
Real-World Applications

4 )

System Design Optimization

\— J

Sensor Placement
Optimization

Balcony
Bedroom

EUF@) roomi T .

— & ™ B

- Bathroom

mj{{gﬂm I W
Dining room—

=

= Eﬁntrywayﬂ Storage E
[]

Golestan, Shadan, Omid Ardakanian, and Pierre
Boulanger. "Grey-Box Bayesian Optimization for
Sensor Placement in Assisted Living
Environments." Proceedings of the AAAI
Conference on Attificial Intelligence. Vol. 38. No.
20. 2024.
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Golestan, Shadan, Omid Ardakanian, and Pierre
Boulanger. "Grey-Box Bayesian Optimization for
Sensor Placement in Assisted Living
Environments." Proceedings of the AAAI
Conference on Attificial Intelligence. Vol. 38. No.
20. 2024.
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Bayesian Optimization
Real-World Applications

4 )

System Design Optimization

-

4 N
AutoML (Hyperparameter Optimization)

\_ _/

Automatic LQR Tuning Based on Gaussian Process Global Optimization

Sensor Placement
Optimization

Balcony

ﬂBedroom
‘ Livin room]: .

O
O
]
4 -

1o

Bathroom
gl IED
Dining room

= e [Entrywayﬂ Storage [

.

O |

Golestan, Shadan, Omid Ardakanian, and Pierre
Boulanger. "Grey-Box Bayesian Optimization for
Sensor Placement in Assisted Living
Environments." Proceedings of the AAAI
Conference on Attificial Intelligence. Vol. 38. No.
20. 2024.

https://am.is.mpg.de/research_projects/cont-learn-bayes-opt

Global search
lteration 3

Cost value J
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Reinforcement Learning

Introduction

* Learning by interaction

* Nature-inspired: Learn how to achieve a particular task by trial and error
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Reinforcement Learning

Introduction

 Learning by interaction

* Nature-inspired: Learn how to achieve a particular task by trial and error

: )
“Sit”

b ————
g

Sit
D e EEEEE—

7

Object manipulation

https://sites.qoogle.com/view/entity-centric-rl

Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity-
Centric Reinforcement Learning for Object
Manipulation from Pixels." arXiv preprint
arXiv:2404.01220 (2024).
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Reinforcement Learning

Introduction

 Learning by interaction

* Nature-inspired: Learn how to achieve a particular task by trial and error

“Sit” 4

O R —
g

Sit
D e EEEEE—

f

Object manipulation
Locomotion

Learning to navigate Learns a body design jointly with

. ) ) _ the navigation task
https://sites.qoogle.com/view/entity-centric-rl

https://sites.google.com/view/entity-centric-rl

Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity-
Centric Reinforcement Learning for Object Ha, David. "Reinforcement learning for improving

Manipulation from Pixels." arXiv preprint agent design." Artificial life 25.4 (2019): 352-365.
arXiv:2404.01220 (2024).
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Reinforcement Learning

Introduction

 Learning by interaction

* Nature-inspired: Learn how to achieve a particular task by trial and error

o YR

\i;.’/ Sit

f
Object manipulation Adaptation
Locomotion

N

Learning to navigate Learns a body design jointly with
the navigation task ) . . .
https://sites.google.com/view/entity-centric-rl https://anniesch.github.io/adapt-on-the-go/
https://sites.google.com/view/entity-centric-rl
Haramati, Dan, Tal Daniel, and Aviv Tamar. "Entity- Chen, Annie S., et al. "Adapt On-the-Go: Behavior Modulation for Single-Life
Centric Reinforcement Learning for Object Ha, David. "Reinforcement learning for improving Robot Deployment.” arXiv preprint arXiv:2311.01059 (2023).
Manipulation from Pixels." arXiv preprint agent design." Artificial life 25.4 (2019): 352-365. . ,)
arXiv:2404.01220 (2024). z MITSUBISHI 2] UNIVERSITY - &
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Reinforcement Learning
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Environment:

the world where

the agent exists in
e.g., an assembly line

Agent:
the entity that

takes actions
e.g., robots

Observations:

changes of the environment
observable by the agent

State S ( S ) e.g. objects locations
+1

the immediate situation
the agent finds itself in

Reward (1)) Sum of Reward (R)
a feedback to measure H
the success/failure of a, Rt — Z 7,
i=t

H is a horizon (can be »)
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Environment:

the world where

the agent exists in
e.g., an assembly line

Agent:
the entity that

takes actions
e.g., robots

Observations:

changes of the environment
observable by the agent

State S ( S ) e.g. objects locations
+1

the immediate situation
the agent finds itself in

Reward () Sum of Reward (R))
a feedback to measure H
the success/failure of a, R, = Z V', =Fr+trhy tVy...+tryg
1=t

H is a horizon (can be »)

Discounted Sum of Reward (R))

H .
K; = Z v
1=t

y is a discount factor (0 < y < 1): makes future rewards worth less
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Reinforcement Learning

Core Concepts and Terminology

Q-function Actions (a,):
the allowed moves
Q(St’ Clt) e.g. joints movements,
grab/drop objects

expected total future reward that Iﬁ
the agent can receive in state s, by

taking action a,
Agent:
Q(SP at) — E[Rt | S, at] the entity that
takes actions
e.g., robots
If the agent “magically” knows T \
@ Q(s,, a,), how it should take action a, '
at any given state? Observations:
_ changes of the environment
Policy observable by the agent
best action to take e.g. objects locations
at any given state s Reward () States (s, )

Discounted Sum of Reward (R))
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Q-function

(s, a,)

expected total future reward that
the agent can receive in state s, by

taking action a,

Q(s,,a) = E[R,|s,, a]

If the agent “magically” knows
@ Q(s,, a,), how it should take action a,

at any given state?

Policy
best action to take
at any given state s

r*(s) = argmax Q(s, a)
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Reinforcement Learning

Core Concepts and Terminology

Action Q-function
O(s,, a,)
Ay a dy expected total future reward that
the agent can receive Iin state s, by
taking action a
So Q0> ap)| Q50> a1)| Q50 a2) ° f
O(s,, a,) = E[R,| s, a,]
states 31 Q(sy, ag)|0(s1, ap) |05, ay)
| If the agent “magically” knows
Sy 10(s,, ag)|Q(s,, a1)|0(s,, a-) @ Q(s;» a,), how it should take action ¢,
at any given state?
Policy 7
best action to take

at any given state s

r*(s) = argmax Q(s, a)

a
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Core Concepts and Terminology
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Reinforcement Learning

Core Concepts and Terminology

Actions (a,):

the allowed moves

e.g. joints movements,
grab/drop objects

Q-function :
O(s.a) Agent:
™t/ . the entity that
) S -’ takes actions
POIicy T e.g., robots
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the world where

the agent exists in
e.g., an assembly line

‘ MITSUBISHI [.Z.] UNIVERSITY -~

AV N ELECTRIC

&8 OF ALBERTA QM



Reinforcement Learning

Q-Learning

¢ MITSUBISHI [Z] UNIVERSI v O
AV ELECTRIC @) OF ALBERTA amil



Reinforcement Learning
Q-Learning

1. Initialize

‘ MITSUBISHI UNIVERSITY -~
AV N ELECTRIC OF ALBERTA lel



Reinforcement Learning
Q-Learning

1. Initialize
2. t=0

‘ MITSUBISHI UNIVERSITY ‘-~
AV N ELECTRIC OF ALBERTA lel



Reinforcement Learning

Q-Learning

1. Intialize 7
2. t=20
3. Initialize s, = s
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Reinforcement Learning

Q-Learning

1. Initialize &

2. t=0

3. Initialize s, = s
4. Loop:

‘ MITSUBISHI [.Z.] UNIVERSITY
AN ELECTRIC @ OF ALBERTA A(Mll



Reinforcement Learning

Q-Learning

1. Initialize
2. 1=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)
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Reinforcement Learning

Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7,,5,, 1)
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Reinforcement Learning

Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7,,5,, 1)
4.3. Q(s,a,) =
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Reinforcement Learning
Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7,,5,, 1)
4.3. QO(s,a)= (1 —a) + o )
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Reinforcement Learning
Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7,,5,, 1)

43. QO@s,a)= (1 —a)0(s,a) + of )
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Reinforcement Learning
Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7, 5,.1)
43. O@spa) = (1 —a) O@s,a) + al r+ / max O(s.41.a) )
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Reinforcement Learning

Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7, 5,.1)
43. O@spa) = (1 —a) O@s,a) + al r+ / max O(s.41.a) )

4.4  With prob. 1 — €: n(s,) = arg max (J(s,,a); else choose a random action
a
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Reinforcement Learning

Q-Learning

1. Initialize
2. t=0
3. Initialize s, = s,
4. Loop:
4.1. Take a, = n(s,)

4.2. Observe (7, 5,.1)
43. O@spa) = (1 —a) O@s,a) + al r+ / max O(s.41.a) )

4.4  With prob. 1 — €: n(s,) = arg max (J(s,,a); else choose a random action
a

45. t=t+1
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Reinforcement Learning
Deep Q Network (DQN)

Main Idea: use neural networks to model Q-Function
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Main ldea: use neural networks to model Q-Function
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Main ldea: use neural networks to model Q-Function

(s, ay)
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

(s, a)
Q(Sa 612)

state s
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

(s, ap)

- ~ Q(Sa 612)

state s O(s. a3)
- Y,
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

state s

(s, a;)
Q(Sa 612)
Q(Sa 613)

(s, a,)
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

(s, ay)
- ~ Q(Sa 612)
state § 0(s, ay) n(s) = arg IIIC?X Q(s, a)
N Y
(s, a,)
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

(s, ay)
- ~ Q(Sa 612)
state § 0(s, ay) n(s) = arg mjx Q(s, a)
N Y
(s, a,)

action a
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Reinforcement Learning
Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

(s, a,)
- ~ Q(Sa 612)
updates —
state s 0(s, ay) 7i(s) = arg mjx (s, a)
- )
(s, a,)

action a
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Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

updates

-

~

reward r

-

J

Reinforcement Learning

action a

(s, a;)
Q(Sa 612)
Q(Sa Cl3)

(s, a,)

n(s) = arg max Q(s, a)
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Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

updates

Reinforcement Learning

-

~

reward r

-

J

(r+vy max O(s’,a’))

s’ being the updated s

action a

(s, a;)
Q(Sa 612)
Q(Sa Cl3)

(s, a,)

n(s) = arg max Q(s, a)
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Deep Q Network (DQN)

Main ldea: use neural networks to model Q-Function

updates

# = E[||(r+ymax Q(s’a)) — Qs.a) | |’]

-

~

reward r

-

J

Reinforcement Learning

s’ being the updated s

action a

(s, a;)
Q(Sa 612)
Q(Sa Cl3)

(s, a,)

n(s) = arg max Q(s, a)
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Reinforcement Learning
Real-World Applications

Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." nature 518.7540 (2015): 529-533.
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